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fundamental operators and algorithms for genetic minimum 
weight triangulations are presented, and the adaptive genetic 

Section the convergence of GMWT is discussed. The 
computed results are given in Section 4. In Section the 
parameter selection for GMWT is discussed. Finally, several 
conclusions are obtained. 

that the reader is familiar with genetic 
algorithms and the greedy algorithm for triangulation. 

ABSTRACT 

triangulation of points on a plane, called Genetic Minimum 
Weight Triangulation (GMWT for short), is presented based on 
the rationale of genetic algorithms. Polygon crossover and its 
algorithm for triangulations are proposed. New adaptive genetic 
operators, or adaptive crossover and mutation operators, are 
introduced. It is shown that the new method for the minimum 
weight triangulation can obtain more optimal results of 
triangulations than the greedy algorithm. 2 GENETIC MINIMUM WEIGHT TRIANGULATION 

In this paper, a new method for the minimum weight operators and the structure of GMWT are introduced. In 
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1 INTRODUCTION 
Triangulation plays an important role in finite element 

methods, computer aided geometric design, numerical analysis 
and so on. Although triangulations of scattered points on the 
plane have been the subject of significant research in the past 
few decades, the minimum weight triangulation (MWT for 
short), in which the objective is to minimize the sum of the edge 
lengths of the triangulation of a set of points, is still one of the 
difficult problems. Interpolating values of two-argument 
functions is one of the applications of MWT[l]. 

The greedy triangulation and the Delaunay triangulation 
[1,2,3] are two well-known methods, but it is proved[4,7] that 
neither greedy nor Delaunay triangulation approximates the 
optimum. In fact, the problem of MWT for a set of points may 
be NP-hard[8,9] except the restricted classes of input points 
whose exact solutions can be found easily[9,10,113. 

In this paper, an algorithm for Minimum Weight 
Triangulation (GMWT for short), which is based on the 
rationale of genetic algorithms, is presented. The Genetic 
Algorithm (GA, for short)[13-161 is rooted in the mechanisms 
of evolution and natural genetics. It is a general-purpose global 
optimization technique based on randomized search and 
incorporating some aspects of iterative algorithms, and is 
regarded as a useful method for solving complex optimization 
problems, especially combinatory optimization problems and 
problems whose derivatives can not be computed. The research 
on genetic algorithms and their applications are actually a very 
attractive field. In the paper, the principle and algorithms of 
selection, crossover, mutation and encoding mechanism for 
triangulations are proposed. The computed results of GMWT, 
which are compared with greedy triangulations, are given. It is 
shown that GMWT can obtain better triangulations than the 
greedy algorithm. 

This paper is organized as follows: In Section 2 the 
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Fig. 1 Triangulations of points 

Fundamental to the GA is the encoding mechanism for 
representing the solutions of optimization problems. For a point 

set (Pi I:=, , which contains n points, at most n(n - 1) /2  
edges can be connected. Thus we can represent the status of a 
triangulation by a lower triangular matrix. That is, if the 
edge(or, a straight-line) between point i and point j is selected 
in the triangulation, mii that is the element at row i and column 

j of the matrix is equal to 1, otherwise my = 0. This encoding 

method can make the genetic operators defined later easy to 
handle. 

For example, we can get the following lower triangular 
matrices MI and M2 of the triangulations shown in Fig. 1 (a) 
and (b), respectively: 

In GMWT, a set of lower matrices M i  (i = 1 , 2 . - -  ) 
corresponding to a set of triangulations is referred to as a 
population. The matrix Mi is called the ith string of the 
population. 
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2.2 FITNESS FUNCTION 
The selection or reproduction operator is dependent on how 

fit a given chromosome is. The fitter the string, the greater is its 
probability of going from one generation to the next. In order to 
guarantee that a fitter string has larger fitness value, we can 
define the fitness function as follows: 
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where lij is the distance between e. and Pi .  
2.3 SELECTION 

A new selection strategy a bit similar to the elitist 
strategy[ 131 is used for selection here. That is, the fitness value 
fi of the best string M i  ( k )  of generation k is compared with 

the fitness value f j  of the worst string M j ( k  + 1) of 

generation k + l ,  if fi > fj , then string Mi ( k )  is substituted 

for Mi (k  + 1). By means of this strategy, the maximum 

fitness value of the population does not decrease as the process 
of evolution continues. 
2.4 CROSSOVER OF TRlANGULATlONS 

2.4.1 POLYGON CROSSOVER 
After the selection is completed, a mating pool of strings will 

be obtained. Although there are a lot of techniques for 
crossover, such as single-point crossover, multi-point crossover, 
uniform crossover and so on, most of them can be used for the 
MWT. They do not guarantee that the crossover operators 
produce legal triangulations. 

In the paper, every string is represented by a lower triangular 
matrix in which the elements are either 1 or 0. It is very 
important that crossover operator produces only legal 
triangulations. Therefore, a new crossover operator, called 
polygon crossover, is defined as follows: 

First, find out the elements that are equal to 1 from the 
resulting matrix M’ obtained by exclusive-or of the selected 
two strings M, and M, . In M’ , element mV (or, the element 

at ith row and jth column of matrix M’ ) equal to 1 implies that 
there is an edge between and Pj in one triangulation (say, 

M,, without loss of generality) but not in another one (say, 

M,). Then, randomly select an edge associated with the 
element equal to 1 in M’ , and determine the minimum polygon 
Pmin that contains the points Pi and Pi and resides in both 

triangulations. 
Let p,, be the convex hull of all the points, and S be the set 

of the edges that reside in pmin, 

I = { ( i , j )  E N X N ) e i , j  E S}where ei,, is the edge 

between the points Pi and Pi , A = {m;,j/(i, j )  E I } ,  

1 2  B = {m:, ((i, j )  E I } ,  where ml,, ,mi,, are the elements of 

MI and M,, respectively. A and B are regarded as the 

polygon chromosomes of the two parents NI, and M2, 
respectively. When P,,, # Pmm, the polygon chromosomes A 
and B from the two parents are exchanged with different 
probabilities depending on the fitness values to generate two 

new offspring. The probability Pdc of polygon crossover is 
dynamically changed as follows: 

f - f  
J m a x  J 

f - f  
Pdc = P, -k C] 

J m m  J min 
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Fig. 2 The offspring: (a), (b) the new strings; (c), (d) triangulations 
2.4.2 ALGORITHM FOR FINDING POLYGON 

It is necessary in polygon crossover to find the polygon 
chromosomes from triangulations. An effective algorithm for 
finding the polygon chromosomes from strings M, and M, , 
which are associated with triangulations 1 and 2, respectively, is 
given in Fig. 3. Regard the polygon generated at each step as an 
edge set equal to the union of all its contained triangles. Then 
all the polygons generated form a nested sequence with 
increasing areas, and are contained in a common polygon of 
both triagulations containing Pj . Since pmin is the unique 

minimum common polygon, the procedure will generate pmin 
:orrectly as the first common polygon and terminate. 

CHROMOSOMES 

Algorithm 1 
~ 

) Select at random a straightline P,PJ according to the 

result of MI XOR M, . 
i) Construct an “initial polygon” composed of edges 

p, PI and PJ P, . Without loss of generality, assume that 

line p, PJ resides in triangulation I .  

ii) Push the edges of the initial polygon into stack S. 
v)  While S is not null do 

popping an edge eo out from stack S; 
if eo resides in both triangulations I and 

triangulations 2 
then eo is one of the edges of the minimum polygon 

and added in the set of edges of the minimum 
polygon. 
else the other two edges of the triangle on the right 
side of edges eo in triangulations I are pushed 

onto the top of stack S. 
endif 

/) endwhile 
/i) Determine the polygon chromosomes A and B of the 

strings MI and M,, respectively, according to the 

minimum Dolvnon. 

Fig. 3 Algorithm for polygon crossover 

2.5 MUTATION 
The mutation operator involves the perturbation of two 

adjacent triangles, one of which is randomly chosen and the 
other is chosen to be adjacent to the first. However, not all 
mutations are legal. For instance, suppose that m, , which must 

be equal to 1, is selected in M, and the two triangles are linked 

by the edge PIPl (as shown in Fig. 4). If the value of m,, is 

changed from 1 to 0, then the value of mkr (or m,k if s>k) must 
be changed from 0 to 1 at the same time. This implies that line 

PJ must be replaced by line Pk P, , but this operation can be 

done if and only if the legal triangulation can be kept (as shown 
in Fig. 4 (a)). If the new triangles created by mutation will be 
illegal, as shown in Fig. 5,  then the mutation can not be done. 

P P 

Fig. 4 Legal mutation 

D P 

(a) (b) 

Fig. 5 Illegal mutation 
As with the adaptive polygon crossover, an adaptive mutation 

operator, where the probability of mutation is dynamically 
determined depending on the fitness values, is used 

f m m  -f Pdm = Pm + c, 
f m m  - fmin 

where Pdm is the dynamic probability of mutation. 

2.6 GENETIC MINIMUM WEIGHT TRIANGULATION 

2.6.1 STRUCTURE OF GENETIC MINIMUM WEIGHT 
TRIANGULATION 

Combining the above segment of coding, fitness function 
evaluation, and the operators of selection, polygon crossover 
and mutation, a basic structure of the genetic algorithm for the 
minimum weight triangulation i s  given as follows: 

Algorithm 2 

i)  
ii) while generation counter c the given number of 

Initialize the population of size PopuSize 

generations do 
for each i < PopuSize do 

select two strings randomly and determine their 
polygon chromosomes 
perform the polygon crossover and mutation 
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calculate fitness values and p e g o m  the select 
operation 
store the offspring 

endfor 
if the termination conditions have been met then stop 

i) endwhile 

Fig. 6 Structure of GMWT 
The algorithm of GMWT shown in Fig. 6 contains two loops. 

The inner loop deals with the evolution from one generation to 
the next one. The outer loop specifies the maximum number of 
generations through which the systems is permitted to evolve. 
2.6.2 TERMINATION CONDITIONS 

The evaluation process can terminate in the following ways: 
1) If all the strings in the population of a generation have 

nearly equal fitness values, then convergence has been 
reached. 

2 )  If the system has evolved through the specified maximal 
number of generations, it can be terminated. 

Other termination conditions, such as the upper limit to be 
reached by the average, best or worst value in the population, 
can be used, but they are not adopted in the paper. 
3 

Convergence to the global optimum is one of the advantages 
of genetic algorithms. However, if there are a few extraordinary 
strings, which have high fitness values, at the initial generation, 
using the selection criterion alone may lead to premature 
convergence because of the dominance of the highly fit strings. 
The linear fitness scaling[ 131 and a large population size can be 
used to avoid the premature convergence. In addition, the 
adaptive mutation and selection probability may help the 
genetic algorithm converge to the global optimum[ 171. Also, 
rank-based fitness is a further improvement. 
4 COMPUTING RESULTS 

To evaluate the results of GMWT, examples compared with 
the greedy algorithm are given as follows. 

Example 1. Triangulations of a set of points introduced by 
Levcopoulos[S]. It contains the following points: A so-called 
sink vertex P, with coordinates (0, -1) and a blocking vertex 

Pb with coordinates (1, I); pulling vertices, with 

CONVERGENCE OF THE ALGORITHM OF GMWT 

coordinates (o,-i) i = 1,2, ..-l&]; n - l&] - I crowd 

vertices, lying on the straight-line segment with endpoints (3,3) 
and (4,4). The lowest pulling vertex is called P, and the 

highest crowd vertex P, (see Fig. 7 (a)). 

-1' Ps 

-3' pulling vertex 

-2' 

"li 
-i/-ni Y Pe 

(a) (b) 

Fig. 7 Point set given by Levcopoulos 
This point set is degenerate. In order to avoid degeneracy, we 

adjust the x coordinates of pulling vertices to make them lie on 
a circular arc that goes through P, and P,, such that the line 

passing through Pp and Pb is a tangent to the circular arc. 
Analogously, we adjust the y coordinates of the crowd vertices 
to make them lie on a circular arc that goes through P, and 

Pb , such that the line passing through P, and P, is a tangent 
of that circular arc(see Fig. 7 (b)). 

It has been proved that in greedy triangulation all the pulling 
vertices are connected with the blocking vertex Pb and all the 
crowd vertices are connected with the lowest pulling vertex 
P, (see Fig. 8 (a)). Hence, the total length obtained by the GT is 

R(n x &) . The triangulation computed by the GMWT in our 

runs is much better than that by the greedy algorithm. Using 
GMWT, we can get the triangulation in which all the crowd 
vertices are connected with the highest pulling vertex P,, and 

all the pulling vertices with the highest crowd vertex P, (see 
Fig. 8 (b)). 

(a) (b) 

Fig. 8 The result of GT (a) and GMWT (b) 
Example 2: Triangulations of twelve points. 
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Fig. 9 The results of GT (a) and GMWT (b) 
The triangulation generated by greedy algorithm is shown in 

Fig. 9(a). Its total length is 1814.19, but genetic triangulation 
algorithm can converge to the triangulation whose total edge 
length is 1744.62 as shown in Fig. 9 (b). 

Total 

Length 

(6) 0) 

Fig.10 GT (a) and GMWT (b) of point set obtained randomly 
The triangulation generated by GT is shown in Fig. 10 (a). Its 

total length is 41 10.3. The best result got by GMWT is shown 
in Fig. 10 (b), whose total length is 4054.09. Although the 
improvement of the total length is small, there are many 
differences between the two triangulations. 

The results of GT and GMWT are compared in the following 

% Total % Total 9% 

Length Length 

I I Example 1 I Example 2 I Example3 I 

GT 

GMWT 

528.21 159.19 1814.19 103.99 4110.3 101.39 

331.81 100 1744.62 100 4054.09 100 

5 SELECTING PARAMETERS FOR GMWT 
Five main parameters must be chosen in the GMWT 

algorithm. They are population size, adaptive constants C1 and 
C2, probability of polygon crossover, and probability of 
mutation. Each of the parameters affects the performance of 
GMWT. 
5.1 POPULATION SIZE 

In Figures 1 1  and 12, the best, worst and average fitness 
values of the population which are obtained after computing 
twenty times for Example 3 are marked by square, rhombus and 
triangle points, respectively, and the fitness value of Greedy 
Triangulation by the round point. 

The choice of population size is very important. If the 
selected population size is too small, then the algorithm will 
converge quickly without sufficient processing of the schemata, 
and it may result in premature convergence. On the other hand, 

~ 
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a large population size will lead to a highly time-consuming 
search. 

78350 

278300 
e, 
f 

5 10 20 30 40 50 60 
Population Siz 

Fig. 11 Effect of population size on performance of GMWT 

,78350 

$78300 
3 - 

k- 78200 
0 0.1 0.2 0.3 0.4 0.5 

Constant C 

Fig. 12 Effect of adaptive constant C on GMWT 

Fig.11 shows the performance of GMWT for different 
population sizes, for Example 3. When population size < 30, 
although the algorithm converges fast, it may occur premature 
convergence. Thus, a population size that avoids the problem of 
premature convergence has to be selected. For instance, a 
proper population size can be selected between 30 and 60 in 
Fig. 11. 
5.2 ADAPTIVE CONSTANTS 

Adaptive genetic operators can be used for enhancing 
performance of GMWT. In general, let C1 = C2 I C in GMWT 
approach. Fig. 12 shows the performance of GMWT for 
different adaptive constants, for Example 3. A proper adaptive 
constant C can not only speed up the convergence of GMWT, 
but also contribute to avoidance of premature convergence. In 
practice, the adaptive constant C is generally selected between 
0.1 and 0.5. As shown in Fig. 12, the best selection of the 
adaptive constant C may be 0.4 for Example 3. 
5.3 PROBABILITIES OF POLYGON CROSSOVER 

The probabilities P, and P, of polygon crossover and 
mutation have to be selected carefully. Neither very low nor 
very high probabilities of polygon crossover and mutation are 
good for the process of evolution of GMWT. In practice, 
adaptive constants can dynamically balance the influence of the 
probabilities of polygon crossover and mutation on the 
evolutive process of GMWT. When C= 0.4, the probability of 
polygon crossover can be selected in the range 0.5 to 0.6, and 
the probability of mutation in the range 0.001 to 0.1. 

AND MUTATION 



6 CONCLUSIONS 
The problem of MWT for a set of points may be NP-hard, so 

that it is classified as a combinatorial optimization problem. 
The optimal solution has to be found by a search carried out on 
an exponential search space. This paper attempts to solve the 
problem of the minimum weight triangulation of points on a 
plane using genetic algorithm approach. The applicability of 
GMWT to the problem of MWT has been investigated by 
comparing GMWT with the greedy algorithm, which is often 
used in CAD tools to solve problems of computational 
geometry. It is shown that GMWT algorithm presented in this 
paper can get better triangulation of points on a plane than the 
greedy algorithm. The further extensions of this research work 
are as follows: 

Extending this research to a set of 3D points to generate 
better tetrahedral meshes. 
Using genetic algorithms to solve the problems of mesh 
generation of 2D and 3D points for finite element 
methods by trying out better coding mechanisms, and by 
devising better genetic operators such as selection, 
crossover and mutation. 
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